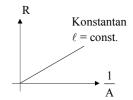
Abschlussprüfung 2001

an den Realschulen in Bayern

PHYSIK

Aufgabengruppe A


A 1 Elektrizitätslehre I

A 1.1.0 In einem Versuch soll für Konstantandrähte mit gleicher Querschnittsfläche (A = 0,13 mm²) der elektrische Widerstand in Abhängigkeit von der Drahtlänge untersucht werden. Dabei wird für unterschiedlich lange Drähte bei einer konstanten Spannung (U = 4,5 V) jeweils die Stromstärke I gemessen.

Es ergeben sich folgende Messwerte:

ℓ in m	0,30	0,50	0,75	0,90	1,20	1,50
I in A	3,9	2,4	1,6	1,3	0,94	0,78

- A 1.1.1 Stellen Sie in einer neuen Tabelle den Widerstand R in Abhängigkeit von der Drahtlänge ℓ dar und werten Sie den Versuch rechnerisch aus. Formulieren Sie das Versuchsergebnis.
- A 1.1.2 Die grafische Auswertung eines zweiten Versuches ergibt nebenstehendes Diagramm. Interpretieren Sie das Diagramm und formulieren Sie das Ergebnis dieses Versuches.

- A 1.1.3 Fassen Sie die beiden Ergebnisse aus 1.1.1 und 1.1.2 zu einer Größengleichung für den Widerstand zusammen und bestimmen Sie an Hand der Versuchsauswertung in 1.1.1 den spezifischen Widerstand ρ von Konstantan.
- A 1.2.0 Ein elektrisches Gerät mit den Betriebsdaten (24 V / 60 W) soll mit Hilfe eines Vorwiderstandes mit Netzspannung (230 V) betrieben werden.
- A 1.2.1 Erstellen Sie eine Schaltskizze und berechnen Sie den erforderlichen Vorwiderstand.
- A 1.2.2 Ermitteln Sie die elektrische Leistung im Vorwiderstand sowie den Wirkungsgrad für diese Schaltung.

Abschlussprüfung 2001

an den Realschulen in Bayern

PHYSIK

Aufgabengruppe A

Lösungsvorschlag:

A 1 Elektrizitätslehre I

A 1.1.1 Numerische Auswertung:

ℓ in m	0,30	0,50	0,75	0,90	1,20	1,50
R in Ω	1,2	1,9	2,8	3,5	4,8	5,8
$\frac{R}{\ell}$ in $\frac{\Omega}{m}$	4,0	3,8	3,7	3,9	4,0	3,9

Ergebnis: R $\sim \ell$, bei gleichem Material und gleicher Querschnittsfläche

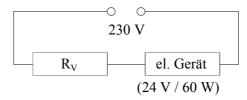
A 1.1.2 Für Konstantandrähte gleicher Länge wird der Widerstand R in Abhängigkeit von der Querschnittsfläche A untersucht.

Ergebnis: R ~
$$\frac{1}{A}$$

A 1.1.3
$$R \sim \ell$$
, und $R \sim \frac{1}{A}$ ergibt $R \sim \ell \cdot \frac{1}{A}$

Übergang zur Größengleichung durch Einführen einer Proportionalitätskonstanten:

$$R = \rho \cdot \frac{\ell}{A}$$


Mittelwert aus 1.1.1:
$$(\frac{R}{\ell}) = 3.9 \frac{\Omega}{m}$$

$$\rho = \overline{\left(\frac{R}{\ell}\right)} \cdot A$$

$$\rho = \overline{\left(\frac{R}{\ell}\right)} \cdot A \qquad \qquad \rho = 3.9 \frac{\Omega}{m} \cdot 0.13 \text{ mm}^2 \qquad \qquad \rho = 0.51 \frac{\Omega \cdot \text{mm}^2}{m}$$

$$\rho = 0.51 \frac{\Omega \cdot \text{mm}^2}{\text{m}}$$

A 1.2.1 Schaltskizze:

Stromstärke im Vorwiderstand:

$$I_{V} = \frac{P}{II}$$

$$I_{V} = \frac{60 \text{ W}}{24 \text{ V}}$$

$$I_{V} = 2,5 \text{ A}$$

Vorwiderstand:

$$R_{V} = \frac{U_{V}}{I_{V}}$$

$$I_{v} = \frac{P}{U}$$
 $I_{v} = \frac{60 \text{ W}}{24 \text{ V}}$ $I_{v} = 2.5 \text{ A}$ $R_{v} = \frac{U_{v}}{I_{v}}$ $R_{v} = \frac{230 \text{ V} - 24 \text{ V}}{2.5 \text{ A}}$ $R_{v} = 82 \Omega$

$$R_v = 82 \Omega$$

$$A 1.2.2 \quad P_{V} = U_{V} \cdot I_{V}$$

$$\begin{split} P_{_{V}} &= U_{_{V}} \cdot I_{_{V}} & \qquad \qquad P_{_{V}} = (230-24) \text{ V} \cdot 2,5 \text{ A} \\ \eta &= \frac{P_{_{Nutz}}}{P_{_{Zu}}} & \qquad \qquad \eta = \frac{60 \text{ W}}{230 \text{ V} \cdot 2,5 \text{ A}} \end{split}$$

$$P_{V} = 0.52 \text{ kW}$$

$$\eta = 0.10 \quad (10\%)$$